The small GTPase HRas shapes local PI3K signals through positive feedback and regulates persistent membrane extension in migrating fibroblasts
نویسندگان
چکیده
Self-amplification of phosphoinositide 3-kinase (PI3K) signaling is believed to regulate asymmetric membrane extension and cell migration, but the molecular organization of the underlying feedback circuit is elusive. Here we use an inducible approach to synthetically activate PI3K and interrogate the feedback circuitry governing self-enhancement of 3'-phosphoinositide (3-PI) signals in NIH3T3 fibroblasts. Synthetic activation of PI3K initially leads to uniform production of 3-PIs at the plasma membrane, followed by the appearance of asymmetric and highly amplified 3-PI signals. A detailed spatiotemporal analysis shows that local self-amplifying 3-PI signals drive rapid membrane extension with remarkable directional persistence and initiate a robust migratory response. This positive feedback loop is critically dependent on the small GTPase HRas. Silencing of HRas abrogates local amplification of 3-PI signals upon synthetic PI3K activation and results in short-lived protrusion events that do not support cell migration. Finally, our data indicate that this feedback circuit is likely to operate during platelet-derived growth factor-induced random cell migration. We conclude that positive feedback between PI3K and HRas is essential for fibroblasts to spontaneously self-organize and generate a productive migratory response in the absence of spatial cues.
منابع مشابه
Robust Neuronal Symmetry Breaking by Ras-Triggered Local Positive Feedback
Neuronal polarity is initiated by a symmetry-breaking event whereby one out of multiple minor neurites undergoes rapid outgrowth and becomes the axon [1]. Axon formation is regulated by phosphatidylinositol 3-kinase (PI3K)-related signaling elements [2-10] that drive local actin [11] and microtubule reorganization [3, 12], but the upstream signaling circuit that causes symmetry breaking and gua...
متن کاملPLEKHG3 enhances polarized cell migration by activating actin filaments at the cell front.
Cells migrate by directing Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 (Cdc42) activities and by polymerizing actin toward the leading edge of the cell. Previous studies have proposed that this polarization process requires a local positive feedback in the leading edge involving Rac small GTPase and actin polymerization with PI3K likely playing a coord...
متن کاملReceptor-specific regulation of phosphatidylinositol 3'-kinase activation by the protein tyrosine phosphatase Shp2.
Receptor tyrosine kinases (RTKs) play distinct roles in multiple biological systems. Many RTKs transmit similar signals, raising questions about how specificity is achieved. One potential mechanism for RTK specificity is control of the magnitude and kinetics of activation of downstream pathways. We have found that the protein tyrosine phosphatase Shp2 regulates the strength and duration of phos...
متن کاملCytohesin 2/ARF6 regulates preadipocyte migration through the activation of ERK1/2.
Preadipocyte migration is vital for the development of adipose tissue, which plays a crucial role in lipid metabolism. ADP-ribosylation factor 6 (ARF6) small GTPase, which regulates membrane trafficking, is activated by GTP-exchange factors (GEFs) such as cytohesin 2. Cytohesin 2 and ARF6 have previously been implicated in the regulation of 3T3-L1 preadipocyte migration. We investigated here th...
متن کاملFunctional analysis of a duplication (p.E63_D69dup) in the switch II region of HRAS: new aspects of the molecular pathogenesis underlying Costello syndrome.
Costello syndrome is a congenital disorder comprising a characteristic face, severe feeding difficulties, skeletal, cardiac and skin abnormalities, intellectual disability and predisposition to malignancies. It is caused by heterozygous germline HRAS mutations mostly affecting Gly(12) or Gly(13), which impair HRAS-GTPase activity and result in increased downstream signal flow independent of inc...
متن کامل